Электронный архив

Emerging Technologies for Real-Time Intraoperative Margin Assessment in Future Breast-Conserving Surgery

Показать сокращенную информацию

dc.contributor.author Pradipta A.R.
dc.contributor.author Tanei T.
dc.contributor.author Morimoto K.
dc.contributor.author Shimazu K.
dc.contributor.author Noguchi S.
dc.contributor.author Tanaka K.
dc.date.accessioned 2021-02-25T06:40:55Z
dc.date.available 2021-02-25T06:40:55Z
dc.date.issued 2020
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/160986
dc.description.abstract © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Clean surgical margins in breast-conserving surgery (BCS) are essential for preventing recurrence. Intraoperative pathologic diagnostic methods, such as frozen section analysis and imprint cytology, have been recognized as crucial tools in BCS. However, the complexity and time-consuming nature of these pathologic procedures still inhibit their broader applicability worldwide. To address this situation, two issues should be considered: 1) the development of nonpathologic intraoperative diagnosis methods that have better sensitivity, specificity, speed, and cost; and 2) the promotion of new imaging algorithms to standardize data for analyzing positive margins, as represented by artificial intelligence (AI), without the need for judgment by well-trained pathologists. Researchers have attempted to develop new methods or techniques; several have recently emerged for real-time intraoperative management of breast margins in live tissues. These methods include conventional imaging, spectroscopy, tomography, magnetic resonance imaging, microscopy, fluorescent probes, and multimodal imaging techniques. This work summarizes the traditional pathologic and newly developed techniques and discusses the advantages and disadvantages of each method. Taking into consideration the recent advances in analyzing pathologic data from breast cancer tissue with AI, the combined use of new technologies with AI algorithms is proposed, and future directions for real-time intraoperative margin assessment in BCS are discussed.
dc.subject artificial intelligence algorithms
dc.subject breast cancer
dc.subject breast-conserving surgery
dc.subject deep learning
dc.subject imaging
dc.subject intraoperative diagnosis
dc.title Emerging Technologies for Real-Time Intraoperative Margin Assessment in Future Breast-Conserving Surgery
dc.type Review
dc.relation.ispartofseries-issue 9
dc.relation.ispartofseries-volume 7
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2020-7-9-SID85081751004


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика