Электронный архив

Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls

Показать сокращенную информацию

dc.contributor.author Luo R.
dc.contributor.author Kuzyakov Y.
dc.contributor.author Liu D.
dc.contributor.author Fan J.
dc.contributor.author Luo J.
dc.contributor.author Lindsey S.
dc.contributor.author He J.S.
dc.contributor.author Ding W.
dc.date.accessioned 2021-02-24T20:33:53Z
dc.date.available 2021-02-24T20:33:53Z
dc.date.issued 2020
dc.identifier.issn 0038-0717
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/160921
dc.description.abstract © 2020 Elsevier Ltd Nitrogen (N) and phosphorus (P) availability strongly affects carbon (C) cycling and storage in terrestrial ecosystems. Nutrient addition can increase C inputs into soil via increased above- and belowground plant productivity, but at the same time can accelerate organic matter decomposition in the soil. The mechanisms underlying these effects on soil organic C (SOC) dynamics remain unclear, especially in nutrient-limited alpine ecosystems that have been subjected to increasing N and P availability in recent decades. The aim of this study was to clarify the mechanisms underlying SOC decomposition and stabilization in an alpine grassland soil after four years of N and P additions. The soil aggregate size distribution, microbial community structure (lipid biomarkers), microbial C use efficiency (CUE) and microbial necromass composition (amino sugar biomarkers) were analyzed. Nutrient addition increased dominance of fast-growing bacteria (copiotrophs), while P addition alone intensified the competitive interactions between arbuscular mycorrhizal and saprotrophic fungi. These changes led to decreases in the microbial CUE of glucose by 1.6–3.5% and of vanillin by 8.5%, and therefore, reduced SOC content in the topsoil. The total microbial necromass remained unaffected by nutrient addition, but the contribution of fungal necromass to SOC increased. The increased abundance of arbuscular mycorrhizal fungi and fungal necromass under elevated N availability raised the mass proportion of soil macroaggregates (>250 μm) by 16.5–20.3%. Therefore, fungi were highly involved in macroaggregation following N addition, and so, moderated the SOC losses through enhanced physical protection. Overall, the complex interactions between microbial physiology (CUE), necromass composition (amino sugars) and physical protection (macroaggregation) in mediating SOC dynamics in response to nutrient enrichment were disentangled to better predict the capability of alpine grassland soils to act as a C sink or source under global change.
dc.relation.ispartofseries Soil Biology and Biochemistry
dc.subject Aggregation
dc.subject Microbial carbon use efficiency
dc.subject Microbial community composition
dc.subject Microbial necromass
dc.subject Nitrogen and phosphorus fertilization
dc.subject Soil organic carbon
dc.title Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls
dc.type Article
dc.relation.ispartofseries-volume 144
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS00380717-2020-144-SID85080040221


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика