Электронный архив

Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect

Показать сокращенную информацию

dc.contributor.author Ryabova A.
dc.contributor.author Cornette R.
dc.contributor.author Cherkasov A.
dc.contributor.author Watanabe M.
dc.contributor.author Okuda T.
dc.contributor.author Shagimardanova E.
dc.contributor.author Kikawada T.
dc.contributor.author Gusev O.
dc.date.accessioned 2021-02-24T20:33:12Z
dc.date.available 2021-02-24T20:33:12Z
dc.date.issued 2020
dc.identifier.issn 0027-8424
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/160856
dc.description.abstract © 2020 National Academy of Sciences. All rights reserved. Some organisms have evolved a survival strategy to withstand severe dehydration in an ametabolic state, called anhydrobiosis. The only known example of anhydrobiosis among insects is observed in larvae of the chironomid Polypedilum vanderplanki. Recent studies have led to a better understanding of the molecular mechanisms underlying anhydrobiosis and the action of specific protective proteins. However, gene regulation alone cannot explain the rapid biochemical reactions and independent metabolic changes that are expected to sustain anhydrobiosis. For this reason, we conducted a comprehensive comparative metabolome-transcriptome analysis in the larvae. We showed that anhydrobiotic larvae adopt a unique metabolic strategy to cope with complete desiccation and, in particular, to allow recovery after rehydration. We argue that trehalose, previously known for its anhydroprotective properties, plays additional vital roles, providing both the principal source of energy and also the restoration of antioxidant potential via the pentose phosphate pathway during the early stages of rehydration. Thus, larval viability might be directly dependent on the total amount of carbohydrate (glycogen and trehalose). Furthermore, in the anhydrobiotic state, energy is stored as accumulated citrate and adenosine monophosphate, allowing rapid reactivation of the citric acid cycle and mitochondrial activity immediately after rehydration, before glycolysis is fully functional. Other specific adaptations to desiccation include potential antioxidants (e.g., ophthalmic acid) and measures to avoid the accumulation of toxic waste metabolites by converting these to stable and inert counterparts (e.g., xanthurenic acid and allantoin). Finally, we confirmed that these metabolic adaptations correlate with unique organization and expression of the corresponding enzyme genes.
dc.relation.ispartofseries Proceedings of the National Academy of Sciences of the United States of America
dc.subject Anhydrobiosis
dc.subject Desiccation tolerance
dc.subject Metabolome
dc.subject Polypedilum vanderplanki
dc.subject Transcriptome
dc.title Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect
dc.type Article
dc.relation.ispartofseries-issue 32
dc.relation.ispartofseries-volume 117
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 19209
dc.source.id SCOPUS00278424-2020-117-32-SID85089608294


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика