Показать сокращенную информацию
dc.contributor.author | Gahramanov I. | |
dc.contributor.author | Musaev E.T. | |
dc.date.accessioned | 2021-02-24T20:32:50Z | |
dc.date.available | 2021-02-24T20:32:50Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/160820 | |
dc.description.abstract | © 2020 Author(s). We consider a Hamiltonian system that has its origin in a generalization of the exact renormalization group flow of matrix scalar field theory and describes a non-linear generalization of the shock-wave equation that is known to be integrable. Analyzing conserved currents of the system, this paper shows that these follow a nice pattern governed by coefficients of Motzkin polynomials, where each integral of motion corresponds to a path on a unit lattice. | |
dc.relation.ispartofseries | Journal of Mathematical Physics | |
dc.title | Integrability properties of Motzkin polynomials | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 61 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS00222488-2020-61-3-SID85082747020 |