Показать сокращенную информацию
dc.contributor.author | Ismagilov A. | |
dc.contributor.author | Kayumov I.R. | |
dc.contributor.author | Ponnusamy S. | |
dc.date.accessioned | 2021-02-24T20:32:49Z | |
dc.date.available | 2021-02-24T20:32:49Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/160819 | |
dc.description.abstract | © 2020 Elsevier Inc. This article is devoted to the sharp improvement of the classical Bohr inequality for bounded analytic functions defined on the unit disk. We also prove two other sharp versions of the Bohr inequality by replacing the constant term by the absolute of the function and the square of the absolute of the function, respectively. | |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications | |
dc.subject | Bohr radius | |
dc.subject | Bounded analytic functions | |
dc.subject | Schwarz-Pick lemma | |
dc.title | Sharp Bohr type inequality | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 489 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS0022247X-2020-489-1-SID85083361476 |