Kazan Federal University Digital Repository

Inequalities for the block projection operators

Show simple item record

dc.contributor Казанский федеральный университет
dc.contributor.author Bikchentaev Airat Midkhatovich
dc.contributor.author Sukochev Fedor
dc.date.accessioned 2021-02-05T08:39:39Z
dc.date.available 2021-02-05T08:39:39Z
dc.date.issued 2021
dc.identifier.citation Bikchentaev A., Sukochev F. Inequalities for the block projection operators / A. Bikchentaev, F. Sukochev // J. Functional Analysis. - 2021. - V. 280, no. 7. - art. 108851 (18 p.) - DOI: 10.1016/j.jfa.2020.108851.
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/160577
dc.description.abstract Originally studied by Gohberg and Krein, the block projection operators admit a natural extension to the setting of quasi-normed ideals and noncommutative integration. Here, we establish several uniform submajorizationinequalities for block projection operators. We also show that in the quasi-normed setting, for $L_p$-spaces with $0 (p \leq 1$, a reverse inequality holds.
dc.language.iso en
dc.relation.ispartofseries Journal of Functional Analysis
dc.rights открытый доступ
dc.subject Noncommutative symmetric spaces
dc.subject Uniform majorization
dc.subject Block projection operators
dc.subject Operator inequalities
dc.title Inequalities for the block projection operators
dc.type Article
dc.contributor.org Региональный научно-образовательный математический центр
dc.description.pages 1-18
dc.relation.ispartofseries-issue 7
dc.relation.ispartofseries-volume 280
dc.pub-id 248326
dc.identifier.doi 10.1016/j.jfa.2020.108851

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account