dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.contributor.author |
Sukochev Fedor |
|
dc.date.accessioned |
2021-02-05T08:39:39Z |
|
dc.date.available |
2021-02-05T08:39:39Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Bikchentaev A., Sukochev F. Inequalities for the block projection operators / A. Bikchentaev, F. Sukochev // J. Functional Analysis. - 2021. - V. 280, no. 7. - art. 108851 (18 p.) - DOI: 10.1016/j.jfa.2020.108851. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/160577 |
|
dc.description.abstract |
Originally studied by Gohberg and Krein, the block projection operators admit a natural extension to the setting of quasi-normed ideals and noncommutative integration. Here, we establish several uniform submajorizationinequalities for block projection operators. We also show that in the quasi-normed setting, for $L_p$-spaces with $0 (p \leq 1$, a reverse inequality holds. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Journal of Functional Analysis |
|
dc.rights |
открытый доступ |
|
dc.subject |
Noncommutative symmetric spaces |
|
dc.subject |
Uniform majorization |
|
dc.subject |
Block projection operators |
|
dc.subject |
Operator inequalities |
|
dc.title |
Inequalities for the block projection operators |
|
dc.type |
Article |
|
dc.contributor.org |
Региональный научно-образовательный математический центр |
|
dc.description.pages |
1-18 |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
280 |
|
dc.pub-id |
248326 |
|
dc.identifier.doi |
10.1016/j.jfa.2020.108851 |
|