Показать сокращенную информацию
dc.contributor.author | Zaikin A. | |
dc.date.accessioned | 2020-01-22T20:32:12Z | |
dc.date.available | 2020-01-22T20:32:12Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0040-585X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/157924 | |
dc.description.abstract | © 2019 Society for Industrial and Applied Mathematics. The definition of a decision function with asymptotically (n →∞) uniformly minimal d-risk is presented in the framework of the general theory of statistical inference. Using this definition, we prove that the maximum likelihood estimate has asymptotically uniformly minimal d-risk. This extends one result by I. N. Volodin and A. A. Novikov [Theory Probab. Appl., 38 (1994), pp. 118–128] for shrinking priors to the general class of continuous distributions. The proof uses the asymptotic representation of the posterior risk function, as obtained in [A. A. Zaikin, J. Math. Sci. (N.Y.), 229 (2018), pp. 678–697]. | |
dc.relation.ispartofseries | Theory of Probability and its Applications | |
dc.subject | D-risk | |
dc.subject | Maximum likelihood estimate | |
dc.subject | Posterior risk asymptotics | |
dc.title | Estimates with asymptotically uniformly minimal d-risk | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 63 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 500 | |
dc.source.id | SCOPUS0040585X-2019-63-3-SID85064694652 |