Электронный архив

Modelling of magnetic storms count data using nonlinear poisson regression

Показать сокращенную информацию

dc.contributor.author Pekina A.
dc.contributor.author Maslennikova Y.
dc.contributor.author Bochkarev V.
dc.date.accessioned 2020-01-21T21:00:18Z
dc.date.available 2020-01-21T21:00:18Z
dc.date.issued 2019
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157886
dc.description.abstract © 2019 IEEE. The paper proposes a prediction model of dynamics of time series of magnetic storms number. The model used nonlinear Poisson regression. The investigated time series were converted from Dst index data for the 1964-2018 time interval. An artificial neural network was used to build a nonlinear autoregressive model. The training procedures were adapted using statistical properties of the investigated time series. It is shown that fluctuations of the number of geomagnetic storms are close to the Poisson distribution. Thus, to estimate the prediction efficiency, we proposed a special quality measure based on the analysis of the standard deviation ratio of the estimated model parameters. The model was used to forecast the number of magnetic storms for a week in advance. It was shown that the prediction accuracy was 20% higher compared to the traditional approaches to training of artificial neural network systems. A similar approach can also be successfully used to forecast dynamics of rare events number in atmospheric and solar-terrestrial physics.
dc.subject Artificial neural networks
dc.subject Geomagnetic activity
dc.subject Nonlinear poisson regression
dc.title Modelling of magnetic storms count data using nonlinear poisson regression
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 480
dc.source.id SCOPUS-2019-SID85072378564


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика