Электронный архив

Implementation of machine learning algorithms to create diabetic patient re-admission profiles

Показать сокращенную информацию

dc.contributor.author Alloghani M.
dc.contributor.author Aljaaf A.
dc.contributor.author Hussain A.
dc.contributor.author Baker T.
dc.contributor.author Mustafina J.
dc.contributor.author Al-Jumeily D.
dc.contributor.author Khalaf M.
dc.date.accessioned 2020-01-21T20:57:20Z
dc.date.available 2020-01-21T20:57:20Z
dc.date.issued 2019
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157867
dc.description.abstract BACKGROUND: Machine learning is a branch of Artificial Intelligence that is concerned with the design and development of algorithms, and it enables today's computers to have the property of learning. Machine learning is gradually growing and becoming a critical approach in many domains such as health, education, and business. METHODS: In this paper, we applied machine learning to the diabetes dataset with the aim of recognizing patterns and combinations of factors that characterizes or explain re-admission among diabetes patients. The classifiers used include Linear Discriminant Analysis, Random Forest, k-Nearest Neighbor, Naïve Bayes, J48 and Support vector machine. RESULTS: Of the 100,000 cases, 78,363 were diabetic and over 47% were readmitted.Based on the classes that models produced, diabetic patients who are more likely to be readmitted are either women, or Caucasians, or outpatients, or those who undergo less rigorous lab procedures, treatment procedures, or those who receive less medication, and are thus discharged without proper improvements or administration of insulin despite having been tested positive for HbA1c. CONCLUSION: Diabetic patients who do not undergo vigorous lab assessments, diagnosis, medications are more likely to be readmitted when discharged without improvements and without receiving insulin administration, especially if they are women, Caucasians, or both.
dc.subject Algorithms
dc.subject Diabetes re-admission
dc.subject HbA1c
dc.subject Linear discriminant
dc.subject Machine learning
dc.subject Support vector machine
dc.title Implementation of machine learning algorithms to create diabetic patient re-admission profiles
dc.type Article
dc.relation.ispartofseries-volume 19
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 253
dc.source.id SCOPUS-2019-19-SID85076400176


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика