Kazan Federal University Digital Repository

Application of neural networks in object recognition tasks for ADAS systems

Show simple item record

dc.contributor.author Ziyatdinov R.
dc.contributor.author Biktimirov R.
dc.date.accessioned 2020-01-21T20:50:58Z
dc.date.available 2020-01-21T20:50:58Z
dc.date.issued 2019
dc.identifier.issn 1757-8981
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157774
dc.description.abstract © 2019 IOP Publishing Ltd. All rights reserved. Modern driver assistance systems (ADAS) require an environmental recognition function to inform the driver and for making management decisions. Neural networks are used to select and recognize objects in such systems. The paper presents the results of comparative analysis of various neural networks in object recognition problems. Experimental data showed that convolutional neural networks show the best results in recognition problems.
dc.relation.ispartofseries IOP Conference Series: Materials Science and Engineering
dc.title Application of neural networks in object recognition tasks for ADAS systems
dc.type Conference Paper
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 570
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS17578981-2019-570-1-SID85072059649


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics