Электронный архив

Forecasting the enterprise tax base through regression of one-dimensional time series

Показать сокращенную информацию

dc.contributor.author Kadochnikova E.
dc.contributor.author Erina T.
dc.contributor.author Margushova A.
dc.date.accessioned 2020-01-21T20:41:59Z
dc.date.available 2020-01-21T20:41:59Z
dc.date.issued 2019
dc.identifier.issn 0975-8364
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157629
dc.description.abstract © 2019, Research Trend. All rights reserved. The authors obtained a forecast of the enterprise tax base. In this paper, the authors evaluated ARIMA models according to the Box-Jenkins method and regression models with dummy variables to account for additive and multiplicative seasonality. On a sample of 48 observations on the tax basis of the estimated model ARMA (1;0), ARMA (1;1), SARMA (1, 1) x (0,1) 6, a model with seasonal dummy variables. The authors focused on the method of selecting the most valid model according to the criteria RMSE and AIC used the method of selection of the designated circle of the most simple model with the fewest parameters. The reliability of the results is confirmed by the information criterion of Akaike, the mean square error of the forecast, the diagnosis of residues on the normal distribution using a special test and the absence of autocorrelation using the Ljung-Box test. The statistical significance of regression models with dummy variables for seasonality was not confirmed. A promising direction of development of this study can be a combination of forecasts, as well as the use of polynomial trends.
dc.relation.ispartofseries International Journal on Emerging Technologies
dc.subject ARIMA model
dc.subject Forecasting
dc.subject Model with dummy seasonal variables
dc.subject Stationarity
dc.subject Tax base
dc.subject Time series
dc.title Forecasting the enterprise tax base through regression of one-dimensional time series
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 10
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 232
dc.source.id SCOPUS09758364-2019-10-2-SID85074681952


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика