Kazan Federal University Digital Repository

A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions

Show simple item record

dc.contributor.author Konnov I.
dc.date.accessioned 2020-01-21T20:32:01Z
dc.date.available 2020-01-21T20:32:01Z
dc.date.issued 2019
dc.identifier.issn 0022-3239
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157354
dc.description.abstract © 2019, Springer Science+Business Media, LLC, part of Springer Nature. We suggest a conjugate subgradient type method without any line search for minimization of convex non-differentiable functions. Unlike the custom methods of this class, it does not require monotone decrease in the goal function and reduces the implementation cost of each iteration essentially. At the same time, its step-size procedure takes into account behavior of the method along the iteration points. The preliminary results of computational experiments confirm the efficiency of the proposed modification.
dc.relation.ispartofseries Journal of Optimization Theory and Applications
dc.subject Conjugate subgradient method
dc.subject Convergence properties
dc.subject Convex minimization problems
dc.subject Non-differentiable functions
dc.subject Simple step-size choice
dc.title A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions
dc.type Article
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS00223239-2019-SID85074041175


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics