Показать сокращенную информацию

dc.contributor.author Gabidullina Z.
dc.date.accessioned 2020-01-21T20:32:00Z
dc.date.available 2020-01-21T20:32:00Z
dc.date.issued 2019
dc.identifier.issn 0022-3239
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157353
dc.description.abstract © 2019, Springer Science+Business Media, LLC, part of Springer Nature. We present a novel fully adaptive conditional gradient method with the step length regulation for solving pseudo-convex constrained optimization problems. We propose some deterministic rules of the step length regulation in a normalized direction. These rules guarantee to find the step length by utilizing the finite procedures and provide the strict relaxation of the objective function at each iteration. We prove that the sequence of the function values for the iterates generated by the algorithm converges globally to the objective function optimal value with sublinear rate.
dc.relation.ispartofseries Journal of Optimization Theory and Applications
dc.subject Adaptation
dc.subject Descent direction
dc.subject Normalization
dc.subject Optimization problems
dc.subject Pseudo-convex function
dc.subject Rate of convergence
dc.subject Regulation
dc.subject Step length
dc.title Adaptive Conditional Gradient Method
dc.type Article
dc.relation.ispartofseries-issue 3
dc.relation.ispartofseries-volume 183
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1077
dc.source.id SCOPUS00223239-2019-183-3-SID85074016312


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика