Показать сокращенную информацию
dc.contributor.author | Bikchentaev A. | |
dc.contributor.author | Sukochev F. | |
dc.date.accessioned | 2020-01-21T20:31:57Z | |
dc.date.available | 2020-01-21T20:31:57Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/157346 | |
dc.description.abstract | © 2019 Elsevier Inc. Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a faithful normal semifinite trace on M. Let tτ be the measure topology on the ⁎-algebra S(M,τ) of all τ-measurable operators. We prove that for B∈S(M,τ)+ the sets IB={A∈S(M,τ)h:−B≤A≤B} and KB={A∈S(M,τ):A⁎A≤B} are convex and tτ-closed in S(M,τ). In this case, we have IB={BTB:T∈Mhand‖T‖≤1} and, for invertible B, we describe the set of extreme points of the set IB. Let M be an atomic von Neumann algebra. We prove that an operator B∈S(M,τ)+ is τ-compact if and only if the set IB is tτ-compact. The tτ-compactness of IB for all τ-compact operators B characterizes these algebras. | |
dc.relation.ispartofseries | Journal of Mathematical Analysis and Applications | |
dc.subject | Hilbert space | |
dc.subject | Measurable operator | |
dc.subject | Measure topology | |
dc.subject | Non-commutative integration | |
dc.subject | Operator inequality | |
dc.subject | von Neumann algebra | |
dc.title | When weak and local measure convergence implies norm convergence | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 473 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1414 | |
dc.source.id | SCOPUS0022247X-2019-473-2-SID85060147801 |