dc.contributor.author |
Bikchentaev A. |
|
dc.contributor.author |
Sukochev F. |
|
dc.date.accessioned |
2020-01-21T20:31:57Z |
|
dc.date.available |
2020-01-21T20:31:57Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/157346 |
|
dc.description.abstract |
© 2019 Elsevier Inc. Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a faithful normal semifinite trace on M. Let tτ be the measure topology on the ⁎-algebra S(M,τ) of all τ-measurable operators. We prove that for B∈S(M,τ)+ the sets IB={A∈S(M,τ)h:−B≤A≤B} and KB={A∈S(M,τ):A⁎A≤B} are convex and tτ-closed in S(M,τ). In this case, we have IB={BTB:T∈Mhand‖T‖≤1} and, for invertible B, we describe the set of extreme points of the set IB. Let M be an atomic von Neumann algebra. We prove that an operator B∈S(M,τ)+ is τ-compact if and only if the set IB is tτ-compact. The tτ-compactness of IB for all τ-compact operators B characterizes these algebras. |
|
dc.relation.ispartofseries |
Journal of Mathematical Analysis and Applications |
|
dc.subject |
Hilbert space |
|
dc.subject |
Measurable operator |
|
dc.subject |
Measure topology |
|
dc.subject |
Non-commutative integration |
|
dc.subject |
Operator inequality |
|
dc.subject |
von Neumann algebra |
|
dc.title |
When weak and local measure convergence implies norm convergence |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
473 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1414 |
|
dc.source.id |
SCOPUS0022247X-2019-473-2-SID85060147801 |
|