Электронный архив

Data science to improve patient management system

Показать сокращенную информацию

dc.contributor.author Alloghani M.
dc.contributor.author Aljaaf A.
dc.contributor.author Al-Jumeily D.
dc.contributor.author Hussain A.
dc.contributor.author Mallucci C.
dc.contributor.author Mustafina J.
dc.date.accessioned 2020-01-15T22:12:28Z
dc.date.available 2020-01-15T22:12:28Z
dc.date.issued 2019
dc.identifier.issn 2161-1343
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/157061
dc.description.abstract © 2018 IEEE. The rate at which people miss hospital appointments has decreased but remains a big concern for health care professionals as well as funding agencies. This research paper used an open data obtained from the NHS database to determine the factors that may lead to missed appointments and create a model that can be used to predict the likelihood of a patient missing an appointment. Logistic regression models and bivariate analysis were used to determine whether there was a meaningful relationship/association between 'did not attend' and forgetfulness, gender, apathy, and transportation. An extensive literature review was conducted to narrow down the reasons that might lead to missed appointments. In conclusion, the research showed there was a significant difference between gender, type of clinic and apathy in organizations.
dc.relation.ispartofseries Proceedings - International Conference on Developments in eSystems Engineering, DeSE
dc.subject Apathy
dc.subject Bivariate analysis
dc.subject Forgetfulness
dc.subject Gender
dc.subject Logistic regression
dc.subject Missed appointments
dc.subject Transportation
dc.title Data science to improve patient management system
dc.type Conference Paper
dc.relation.ispartofseries-volume 2018-September
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 27
dc.source.id SCOPUS21611343-2019-2018-SID85063137076


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика