dc.contributor.author |
Ivanshin P. |
|
dc.date.accessioned |
2020-01-15T22:09:25Z |
|
dc.date.available |
2020-01-15T22:09:25Z |
|
dc.date.issued |
2019 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/156769 |
|
dc.description.abstract |
© 2019 by the authors. We prove the existence and uniqueness of the solution of the problem of the minimum norm function ∥ . ∥ ∞ with a given set of initial coefficients of the trigonometric Fourier series cj, j = 0, 1, . . ., 2n. Then, we prove the existence and uniqueness of the solution of the nonnegative function problem with a given set of coefficients of the trigonometric Fourier series cj, j = 1, . . ., 2n for the norm ∥ . ∥1. |
|
dc.subject |
Conditional approximation |
|
dc.subject |
Convergence |
|
dc.subject |
Fourier polynomial |
|
dc.subject |
Norm |
|
dc.title |
Functions of minimal norm with the given set of Fourier coefficients |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
7 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.source.id |
SCOPUS-2019-7-7-SID85070761651 |
|