Показать сокращенную информацию
dc.contributor.author | Dinh T. | |
dc.contributor.author | Tikhonov O. | |
dc.contributor.author | Veselova L. | |
dc.date.accessioned | 2020-01-15T22:01:18Z | |
dc.date.available | 2020-01-15T22:01:18Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2008-8752 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/156513 | |
dc.description.abstract | Copyright © 2019 by the Tusi Mathematical Research Group. We extend inequalities for operator monotone and operator convex functions onto elements of the extended positive part of a von Neumann algebra. In particular, this provides an opportunity to extend the inequalities onto unbounded positive self-adjoint operators. | |
dc.relation.ispartofseries | Annals of Functional Analysis | |
dc.subject | Extended positive part | |
dc.subject | Operator convex function | |
dc.subject | Operator monotone function | |
dc.subject | Von Neumann algebra | |
dc.title | Inequalities for the extended positive part of a von Neumann algebra related to operator-monotone and operator-convex functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 10 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 425 | |
dc.source.id | SCOPUS20088752-2019-10-3-SID85071511949 |