dc.contributor.author |
Dinh T. |
|
dc.contributor.author |
Tikhonov O. |
|
dc.contributor.author |
Veselova L. |
|
dc.date.accessioned |
2020-01-15T22:01:18Z |
|
dc.date.available |
2020-01-15T22:01:18Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
2008-8752 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/156513 |
|
dc.description.abstract |
Copyright © 2019 by the Tusi Mathematical Research Group. We extend inequalities for operator monotone and operator convex functions onto elements of the extended positive part of a von Neumann algebra. In particular, this provides an opportunity to extend the inequalities onto unbounded positive self-adjoint operators. |
|
dc.relation.ispartofseries |
Annals of Functional Analysis |
|
dc.subject |
Extended positive part |
|
dc.subject |
Operator convex function |
|
dc.subject |
Operator monotone function |
|
dc.subject |
Von Neumann algebra |
|
dc.title |
Inequalities for the extended positive part of a von Neumann algebra related to operator-monotone and operator-convex functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
10 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
425 |
|
dc.source.id |
SCOPUS20088752-2019-10-3-SID85071511949 |
|