dc.contributor.author |
Bikchentaev A. |
|
dc.contributor.author |
Abed S. |
|
dc.date.accessioned |
2020-01-15T22:01:12Z |
|
dc.date.available |
2020-01-15T22:01:12Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/156499 |
|
dc.description.abstract |
© 2019, Pleiades Publishing, Ltd. Let P, Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) PQ + QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal; (iii) PQ is M*-paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra M it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) φ(PQ + QP) ≤ 2φ((QPQ)p) for all projections P,Q ∈ M and for some p = p(P, Q) ∈ (0,1]; (iii) φ(PQP) ≤ φ(P)1/pφ(Q)1/q for all projections P, Q ∈ M and some positive numbers p = p(P, Q), q = q(P, Q) with 1/p+ 1/q = 1, p ≠ 2. Corollary: for a positive normal functional φ on M the following conditions are equivalent: (i) φ is tracial; (ii) φ(A + A*) ≤ 2φ(∣A*∣) for all A ∈ M. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
commutativity |
|
dc.subject |
Hilbert space |
|
dc.subject |
linear operator |
|
dc.subject |
operator inequality |
|
dc.subject |
positive functional |
|
dc.subject |
projection |
|
dc.subject |
trace |
|
dc.subject |
von Neumann algebra |
|
dc.title |
Projections and Traces on von Neumann Algebras |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
9 |
|
dc.relation.ispartofseries-volume |
40 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1260 |
|
dc.source.id |
SCOPUS19950802-2019-40-9-SID85073875398 |
|