Электронный архив

Hardy Type Inequalities on Domains with Convex Complement and Uncertainty Principle of Heisenberg

Показать сокращенную информацию

dc.contributor.author Avkhadiev F.
dc.contributor.author Makarov R.
dc.date.accessioned 2020-01-15T22:01:10Z
dc.date.available 2020-01-15T22:01:10Z
dc.date.issued 2019
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/156495
dc.description.abstract © 2019, Pleiades Publishing, Ltd. We prove new integral inequalities for real-valued test functions defined on subdomains of the Euclidean space. We assume that the complement of the subdomain is a non-empty convex set. We prove an extension of the Hadwiger theorems about approximations of convex compact sets by polytopes and obtain some generalizations and improvements of several Hardy type multidimensional inequalities. In particular, in the last section we present an improvement of a two-dimensional inequality, connected with the uncertainty principle of Heisenberg.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.subject convex compact set
dc.subject Euclidean maximal modulus
dc.subject Hardy inequality
dc.subject sharp constant
dc.subject uncertainty principle of Heisenberg
dc.title Hardy Type Inequalities on Domains with Convex Complement and Uncertainty Principle of Heisenberg
dc.type Article
dc.relation.ispartofseries-issue 9
dc.relation.ispartofseries-volume 40
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1250
dc.source.id SCOPUS19950802-2019-40-9-SID85073211274


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика