Показать сокращенную информацию
dc.contributor.author | Nesmelova I. | |
dc.contributor.author | Melnikova D. | |
dc.contributor.author | Ranjan V. | |
dc.contributor.author | Skirda V. | |
dc.date.accessioned | 2020-01-15T21:57:17Z | |
dc.date.available | 2020-01-15T21:57:17Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1877-1173 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/156440 | |
dc.description.abstract | © 2019 Elsevier Inc. Translational (or self-diffusion) coefficient in dilute solution is inversely proportional to the size of a diffusing molecule, and hence self-diffusion coefficient measurements have been applied to determine the effective hydrodynamic radii for a range of native and nonnative protein conformations. In particular, translational diffusion coefficient measurements are useful to estimate the hydrodynamic radius of natively (or intrinsically) disordered proteins in solution, and, thereby, probe the compactness of a protein as well as its change when environmental parameters such as temperature, solution pH, or protein concentration are varied. The situation becomes more complicated in concentrated solutions. In this review, we discuss the translational diffusion of disordered proteins in dilute and crowded solutions, focusing primarily on the information provided by pulsed-field gradient NMR technique, and draw analogies to well-structured globular proteins and synthetic polymers. | |
dc.relation.ispartofseries | Progress in Molecular Biology and Translational Science | |
dc.subject | Diffusion coefficient | |
dc.subject | Hydrodynamic radius | |
dc.subject | Intrinsically disordered protein | |
dc.subject | Protein | |
dc.subject | Random coil | |
dc.subject | Translational diffusion | |
dc.subject | Unfolded protein | |
dc.title | Translational diffusion of unfolded and intrinsically disordered proteins | |
dc.type | Chapter | |
dc.relation.ispartofseries-volume | 166 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 85 | |
dc.source.id | SCOPUS18771173-2019-166-SID85066604723 |