Электронный архив

Virtual screening using pharmacophore models retrieved from molecular dynamic simulations

Показать сокращенную информацию

dc.contributor.author Polishchuk P.
dc.contributor.author Kutlushina A.
dc.contributor.author Bashirova D.
dc.contributor.author Mokshyna O.
dc.contributor.author Madzhidov T.
dc.date.accessioned 2020-01-15T21:48:14Z
dc.date.available 2020-01-15T21:48:14Z
dc.date.issued 2019
dc.identifier.issn 1661-6596
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/156069
dc.description.abstract © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Pharmacophore models are widely used for the identification of promising primary hits in compound large libraries. Recent studies have demonstrated that pharmacophores retrieved from protein-ligand molecular dynamic trajectories outperform pharmacophores retrieved from a single crystal complex structure. However, the number of retrieved pharmacophores can be enormous, thus, making it computationally inefficient to use all of them for virtual screening. In this study, we proposed selection of distinct representative pharmacophores by the removal of pharmacophores with identical three-dimensional (3D) pharmacophore hashes. We also proposed a new conformer coverage approach in order to rank compounds using all representative pharmacophores. Our results for four cyclin-dependent kinase 2 (CDK2) complexes with different ligands demonstrated that the proposed selection and ranking approaches outperformed the previously described common hits approach. We also demonstrated that ranking, based on averaged predicted scores obtained from different complexes, can outperform ranking based on scores from an individual complex. All developments were implemented in open-source software pharmd.
dc.relation.ispartofseries International Journal of Molecular Sciences
dc.subject Molecular dynamics
dc.subject Pharmacophore
dc.subject Virtual screening
dc.title Virtual screening using pharmacophore models retrieved from molecular dynamic simulations
dc.type Article
dc.relation.ispartofseries-issue 23
dc.relation.ispartofseries-volume 20
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS16616596-2019-20-23-SID85075274899


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика