Электронный архив

Computing syntactic parameters for automated text complexity assessment

Показать сокращенную информацию

dc.contributor.author Solovyev V.
dc.contributor.author Solnyshkina M.
dc.contributor.author Ivanov V.
dc.contributor.author Rygaev I.
dc.date.accessioned 2020-01-15T21:48:11Z
dc.date.available 2020-01-15T21:48:11Z
dc.date.issued 2019
dc.identifier.issn 1613-0073
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/156062
dc.description.abstract Copyright © 2019 for this paper by its authors. The article focuses on identifying, extracting and evaluating syntactic parameters influencing the complexity of Russian academic texts. Our ultimate goal is to select a set of text features effectively measuring text complexity and build an automatic tool able to rank Russian academic texts according to grade levels. models based on the most promising features by using machine learning methods The innovative algorithm of designing a predictive model of text complexity is based on a training text corpus and a set of previously proposed and new syntactic features (average sentence length, average number of syllables per word, the number of adjectives, average number of participial constructions, average number of coordinating chains, path number, i.e. average number of sub-trees). Our best model achieves an MSE of 1.15. Our experiments indicate that by adding the abovementioned syntactic features, namely the average number of participial constructions, average number of coordinating chains, and the average number of sub-trees, the text complexity model performance will increase substantially.
dc.relation.ispartofseries CEUR Workshop Proceedings
dc.title Computing syntactic parameters for automated text complexity assessment
dc.type Conference Paper
dc.relation.ispartofseries-volume 2475
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 62
dc.source.id SCOPUS16130073-2019-2475-SID85074072027


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика