Электронный архив

Lagrangian Mixed Finite Element Methods for Nonlinear Thin Shell Problems

Показать сокращенную информацию

dc.contributor.author Karchevsky M.
dc.date.accessioned 2020-01-15T21:48:09Z
dc.date.available 2020-01-15T21:48:09Z
dc.date.issued 2019
dc.identifier.issn 1609-4840
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/156058
dc.description.abstract © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019. A class of Lagrangian mixed finite element methods is constructed for an approximate solution of a problem of nonlinear thin elastic shell theory, namely, the problem of finding critical points of the functional of potential energy according to the Budiansky-Sanders model. The proposed numerical method is based on the use of the second derivatives of the deflection as auxiliary variables. Sufficient conditions for the solvability of the corresponding discrete problem are obtained. Accuracy estimates for approximate solutions are established. Iterative methods for solving the corresponding systems of nonlinear equations are proposed and investigated.
dc.relation.ispartofseries Computational Methods in Applied Mathematics
dc.subject Error Estimate,Iterative Method
dc.subject Mixed Finite Element Method
dc.subject Solvability Condition
dc.subject Thin Elastic Shell
dc.title Lagrangian Mixed Finite Element Methods for Nonlinear Thin Shell Problems
dc.type Article
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS16094840-2019-SID85067394247


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика