Показать сокращенную информацию
dc.contributor.author | Kayumov I. | |
dc.contributor.author | Ponnusamy S. | |
dc.date.accessioned | 2020-01-15T21:46:32Z | |
dc.date.available | 2020-01-15T21:46:32Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1239-629X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155829 | |
dc.description.abstract | © 2019 Annales Academiæ Scientiarum Fennicæ Mathematica. The object of this paper is to study the powered Bohr radius ρ p , p ∈ (1, 2), of analytic functions f(z) =Σ k=0∞ a k z k defined on the unit disk |z| < 1 and such that |f(z)| < 1 for |z| < 1. More precisely, if M pf (r) =Σ k=0∞ |a k | p r k , then we show that M pf (r) ≤ 1 for r ≤ r p where r ρ is the powered Bohr radius for conformal automorphisms of the unit disk. This answers the open problem posed by Djakov and Ramanujan in 2000. A couple of other consequences of our approach is also stated, including an asymptotically sharp form of one of the results of Djakov and Ramanujan. In addition, we consider a similar problem for sense-preserving harmonic mappings in |z| < 1. Finally, we conclude by stating the Bohr radius for the class of Bieberbach-Eilenberg functions. | |
dc.relation.ispartofseries | Annales Academiae Scientiarum Fennicae Mathematica | |
dc.subject | Bieberbach-Eilenberg functions | |
dc.subject | Bohr's inequality | |
dc.subject | Bounded analytic functions | |
dc.subject | Harmonic mappings | |
dc.subject | P-symmetric functions | |
dc.subject | Subordination | |
dc.title | On a powered Bohr inequality | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 44 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 301 | |
dc.source.id | SCOPUS1239629X-2019-44-1-SID85065586020 |