Показать сокращенную информацию
dc.contributor.author | Aminova A. | |
dc.contributor.author | Khakimov D. | |
dc.date.accessioned | 2020-01-15T21:45:38Z | |
dc.date.available | 2020-01-15T21:45:38Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1066-369X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155700 | |
dc.description.abstract | © 2019, Allerton Press, Inc. The curvature of a 5-dimensional h-space H221 of the type {221} [3] is investigated, necessary and sufficient conditions are obtained for H221 to be a space of constant curvature K (Theorem 1). A general solution of the Eisenhart equation is found in an h-space H221 of non-constant curvature. The necessary and sufficient conditions for the existence of non-homothetical projective motion in an h-space H221 of non-constant curvature are established (Theorem 5) and, as a consequence, the structure of the non-homothetical projective Lie algebra in such a space is determined (Theorem 6). | |
dc.relation.ispartofseries | Russian Mathematics | |
dc.subject | five-dimensional pseudo-Riemannian manifold | |
dc.subject | h-space of the type {221} | |
dc.subject | projective Lie algebra | |
dc.subject | the Eisenhart equation | |
dc.title | Projective Group Properties of h-Spaces of Type {221} | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 10 | |
dc.relation.ispartofseries-volume | 63 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 77 | |
dc.source.id | SCOPUS1066369X-2019-63-10-SID85075572344 |