Kazan Federal University Digital Repository

On the Construction of Neuromorphic Fault Dictionaries for Analog Integrated Circuits

Show simple item record

dc.contributor.author Mosin S.
dc.date.accessioned 2020-01-15T21:45:25Z
dc.date.available 2020-01-15T21:45:25Z
dc.date.issued 2019
dc.identifier.issn 1063-7397
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/155669
dc.description.abstract © 2019, Pleiades Publishing, Ltd. Abstract: Methods of machine learning are actively used to construct neuromorphic fault dictionaries that provide the fault diagnostics of analog and mixed-signal integrated circuits in an associative mode. Many problems of the neural network (NN) training associated with the large amount of input data can be solved by reducing the size of the training data sets and using only their significant characteristics. In this paper, a route for the formation of a neuromorphic fault dictionary (NFD) is presented, a method based on the calculation of the entropy for choosing the significant characteristics of the training set is proposed, and the corresponding algorithm is developed. The results of the experimental studies for analog filter are shown demonstrating high efficiency of the proposed method: reduction by a factor of 192 in the NN training time, and coverage up to 95.0% of catastrophic faults and up to 84.81% of parametric faults by the resulting NFD in the course of diagnostics.
dc.relation.ispartofseries Russian Microelectronics
dc.subject analog integrated circuits
dc.subject design automation
dc.subject entropy
dc.subject fault diagnostics
dc.subject machine learning
dc.subject neuromorphic fault dictionary
dc.title On the Construction of Neuromorphic Fault Dictionaries for Analog Integrated Circuits
dc.type Article
dc.relation.ispartofseries-issue 5
dc.relation.ispartofseries-volume 48
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 310
dc.source.id SCOPUS10637397-2019-48-5-SID85073073865


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics