Электронный архив

DCEGen: Dense clutter environment generation tool for autonomous 3D exploration and coverage algorithms testing

Показать сокращенную информацию

dc.contributor.author Denisov E.
dc.contributor.author Sagitov A.
dc.contributor.author Lavrenov R.
dc.contributor.author Su K.
dc.contributor.author Svinin M.
dc.contributor.author Magid E.
dc.date.accessioned 2020-01-15T21:18:08Z
dc.date.available 2020-01-15T21:18:08Z
dc.date.issued 2019
dc.identifier.issn 0302-9743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/155610
dc.description.abstract © Springer Nature Switzerland AG 2019. Autonomous exploration and coverage in 3D environments recently has became a rapidly developing research field. Emerging 3D reconstruction methods, designed specifically for exploration and coverage, allows capturing an environment in a greater details. However, not much work addresses certain difficulties inherent to dense clutter environments. We observed those difficulties and made an attempt that seeks to expand the applicability of such methods to more demanding scenarios. Automating the process of testing and evaluation by designing a dense clutter environment generation algorithm (DCEGen) allows us to measure comparative performance of available algorithms. We focus on path-planning algorithms used in an unmanned ground vehicles. The algorithm was implemented and verified using Gazebo simulator.
dc.relation.ispartofseries Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subject 3D environment reconstruction
dc.subject Autonomous exploration and coverage algorithm
dc.subject Dense clutter environment
dc.subject Gazebo simulation
dc.subject Mobile robot
dc.subject Next-best-view
dc.subject ROS
dc.title DCEGen: Dense clutter environment generation tool for autonomous 3D exploration and coverage algorithms testing
dc.type Conference Paper
dc.relation.ispartofseries-volume 11659 LNAI
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 216
dc.source.id SCOPUS03029743-2019-11659-SID85071417117


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика