Показать сокращенную информацию
dc.contributor.author | Gabdrakhmanov L. | |
dc.contributor.author | Garaev R. | |
dc.contributor.author | Razinkov E. | |
dc.date.accessioned | 2020-01-15T21:18:07Z | |
dc.date.available | 2020-01-15T21:18:07Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155609 | |
dc.description.abstract | © Springer Nature Switzerland AG 2019. We present RUSLAN – a new open Russian spoken language corpus for the text-to-speech task. RUSLAN contains 22200 audio samples with text annotations – more than 31 h of high-quality speech of one person – being the largest annotated Russian corpus in terms of speech duration for a single speaker. We trained an end-to-end neural network for the text-to-speech task on our corpus and evaluated the quality of the synthesized speech using Mean Opinion Score test. Synthesized speech achieves 4.05 score for naturalness and 3.78 score for intelligibility on a 5-point MOS scale. | |
dc.relation.ispartofseries | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.subject | End-to-end speech synthesis | |
dc.subject | Russian speech corpus | |
dc.subject | Text-to-speech | |
dc.title | Ruslan: Russian spoken language corpus for speech synthesis | |
dc.type | Conference Paper | |
dc.relation.ispartofseries-volume | 11658 LNAI | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 113 | |
dc.source.id | SCOPUS03029743-2019-11658-SID85071437125 |