Электронный архив

On the quantum and classical complexity of solving subtraction games

Показать сокращенную информацию

dc.contributor.author Kravchenko D.
dc.contributor.author Khadiev K.
dc.contributor.author Serov D.
dc.date.accessioned 2020-01-15T21:18:05Z
dc.date.available 2020-01-15T21:18:05Z
dc.date.issued 2019
dc.identifier.issn 0302-9743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/155603
dc.description.abstract © Springer Nature Switzerland AG 2019. We study algorithms for solving Subtraction games, which are sometimes referred as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query complexity for solving an arbitrary Subtraction game of n stones is O(n3/2log n). The best known deterministic algorithms for solving such games are based on the dynamic programming approach [8]. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game Θ(n2) in general. Of course, this difference between classical and quantum algorithms is far from the best known examples, but, up to our knowledge, this paper is the first constructive “quantum” contribution to the algorithmic game theory.
dc.relation.ispartofseries Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subject Game theory
dc.subject Nim
dc.subject Quantum algorithm
dc.subject Quantum computation
dc.subject Quantum models
dc.subject Query model
dc.subject Subtraction game
dc.title On the quantum and classical complexity of solving subtraction games
dc.type Conference Paper
dc.relation.ispartofseries-volume 11532 LNCS
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 228
dc.source.id SCOPUS03029743-2019-11532-SID85068589834


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика