Kazan Federal University Digital Repository

On the Implementation of ALFA – Agglomerative Late Fusion Algorithm for Object Detection

Show simple item record

dc.contributor.author Saveleva I.
dc.contributor.author Razinkov E.
dc.date.accessioned 2020-01-15T21:18:04Z
dc.date.available 2020-01-15T21:18:04Z
dc.date.issued 2019
dc.identifier.issn 0302-9743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/155601
dc.description.abstract © Springer Nature Switzerland AG 2019. The paper focuses on implementation details of ALFA – an agglomerative late fusion algorithm for object detection. ALFA agglomeratively clusters detector predictions while taking into account bounding box locations and class scores. We discuss the source code of ALFA and another late fusion algorithm – Dynamic Belief Fusion (DBF). The workflow and the hyperparameters necessary to reproduce the published results are presented. We also provide a framework for evaluation of late fusion algorithms like ALFA, DBF and Non-Maximum Suppression with arbitrary object detectors.
dc.relation.ispartofseries Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subject Agglomerative clustering
dc.subject Late fusion
dc.subject Object detection
dc.title On the Implementation of ALFA – Agglomerative Late Fusion Algorithm for Object Detection
dc.type Conference Paper
dc.relation.ispartofseries-volume 11455 LNCS
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 98
dc.source.id SCOPUS03029743-2019-11455-SID85068981495


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics