Электронный архив

Mimicking 3D food microstructure using limited statistical information from 2D cross-sectional image

Показать сокращенную информацию

dc.contributor.author Derossi A.
dc.contributor.author Gerke K.
dc.contributor.author Karsanina M.
dc.contributor.author Nicolai B.
dc.contributor.author Verboven P.
dc.contributor.author Severini C.
dc.date.accessioned 2020-01-15T21:17:31Z
dc.date.available 2020-01-15T21:17:31Z
dc.date.issued 2019
dc.identifier.issn 0260-8774
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/155557
dc.description.abstract © 2018 We used statistical correlation functions (CFs) to describe food microstructure and to reconstruct their 3D complexity by using limited information coming from single 2D microtomographic images. Apple fleshy parenchyma tissue and muffin crumb were chosen to test the ability of the reconstructions to mimic structural diversities. Several metrics based on morphological measures and cluster functions were utilized to analyze the fidelity of reconstructions. For the apple, reconstructions are accurate enough proving that lineal, L2, and two-point, S2, functions sufficiently describe the complexity of apple tissue. Muffin structure is isotropic but statistically inhomogeneous showing at least two different porosity domains which reduced the fidelity of reconstructions. Further improvement could be obtained by using more CFs as input data and by implementation of the techniques dealing with statistical non-stationarity. Novel stochastic reconstruction and CF-based characterization methods could improve the fidelity of reconstruction and future advances of this technology will allow estimating macroscopic food properties based on (limited) 2/3D input information.
dc.relation.ispartofseries Journal of Food Engineering
dc.subject 3D reconstructions
dc.subject Apple paremchyma
dc.subject Microstructure characterization
dc.subject Mimic food structure
dc.subject Muffin crumb
dc.subject Universal correlation functions
dc.title Mimicking 3D food microstructure using limited statistical information from 2D cross-sectional image
dc.type Article
dc.relation.ispartofseries-volume 241
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 116
dc.source.id SCOPUS02608774-2019-241-SID85051625862


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика