Показать сокращенную информацию
dc.contributor.author | Ogievetsky O. | |
dc.contributor.author | Shlosman S. | |
dc.date.accessioned | 2020-01-15T21:17:14Z | |
dc.date.available | 2020-01-15T21:17:14Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0179-5376 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155531 | |
dc.description.abstract | © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Motivated by a question of W. Kuperberg, we study the 18-dimensional manifold of configurations of six non-intersecting infinite cylinders of radius r, all touching the unit ball in R 3 . We find a configuration with r=18(3+33)≈1.093070331.We believe that this value is the maximum possible. | |
dc.relation.ispartofseries | Discrete and Computational Geometry | |
dc.subject | Critical configuration | |
dc.subject | Integrability | |
dc.subject | Unlocking procedure | |
dc.title | The Six Cylinders Problem: D <inf>3</inf> -Symmetry Approach | |
dc.type | Article | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS01795376-2019-SID85062712485 |