dc.contributor.author |
Kayumov I. |
|
dc.contributor.author |
Ponnusamy S. |
|
dc.contributor.author |
Xuan L. |
|
dc.date.accessioned |
2020-01-15T20:52:23Z |
|
dc.date.available |
2020-01-15T20:52:23Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0007-4497 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/155479 |
|
dc.description.abstract |
© 2019 Let f=h+g‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D. In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ∈[0,2π)such that the function h+e iθ g is convex in D. In this article, we first disprove a more flexible conjecture: “Let f=h+g‾ be a convex harmonic mapping in the disk D. Then there is a θ∈[0,2π)such that the function h+e iθ g is starlike in D”. In addition, we present an example to show that there exists a harmonic automorphism f=h+g‾ of a disk such that the function h+e iθ g is convex in only one direction for θ≠0, and that the analytic function h+g is not starlike therein. The article concludes with a new conjecture. |
|
dc.relation.ispartofseries |
Bulletin des Sciences Mathematiques |
|
dc.subject |
Convex and starlike functions |
|
dc.subject |
Convex in one direction |
|
dc.subject |
Harmonic |
|
dc.subject |
Harmonic automorphism |
|
dc.subject |
Univalent |
|
dc.title |
Rotations of convex harmonic univalent mappings |
|
dc.type |
Article |
|
dc.relation.ispartofseries-volume |
155 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS00074497-2019-155-SID85064616209 |
|