Показать сокращенную информацию
dc.contributor.author | Ng K. | |
dc.contributor.author | Zubkov M. | |
dc.date.accessioned | 2020-01-15T20:52:07Z | |
dc.date.available | 2020-01-15T20:52:07Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155450 | |
dc.description.abstract | © 2019 American Mathematical Society. We settle the long-standing Kierstead conjecture in the negative. We do this by constructing a computable linear order with no rational subintervals, where every block has order type finite or ζ, and where every computable copy has a strongly nontrivial Π01 automorphism. We also construct a strongly η-like linear order where every block has size at most 4 with no rational subinterval such that every Δ02 isomorphic computable copy has a nontrivial Π01 automorphism. | |
dc.relation.ispartofseries | Transactions of the American Mathematical Society | |
dc.subject | Automorphism | |
dc.subject | Computable linear order | |
dc.subject | Kierstead’s conjecture | |
dc.title | On Kierstead’s conjecture | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5 | |
dc.relation.ispartofseries-volume | 372 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 3713 | |
dc.source.id | SCOPUS00029947-2019-372-5-SID85075167727 |