dc.contributor.author |
Ng K. |
|
dc.contributor.author |
Zubkov M. |
|
dc.date.accessioned |
2020-01-15T20:52:07Z |
|
dc.date.available |
2020-01-15T20:52:07Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0002-9947 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/155450 |
|
dc.description.abstract |
© 2019 American Mathematical Society. We settle the long-standing Kierstead conjecture in the negative. We do this by constructing a computable linear order with no rational subintervals, where every block has order type finite or ζ, and where every computable copy has a strongly nontrivial Π01 automorphism. We also construct a strongly η-like linear order where every block has size at most 4 with no rational subinterval such that every Δ02 isomorphic computable copy has a nontrivial Π01 automorphism. |
|
dc.relation.ispartofseries |
Transactions of the American Mathematical Society |
|
dc.subject |
Automorphism |
|
dc.subject |
Computable linear order |
|
dc.subject |
Kierstead’s conjecture |
|
dc.title |
On Kierstead’s conjecture |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5 |
|
dc.relation.ispartofseries-volume |
372 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
3713 |
|
dc.source.id |
SCOPUS00029947-2019-372-5-SID85075167727 |
|