dc.contributor.author |
Fedotov A. |
|
dc.date.accessioned |
2020-01-15T20:52:03Z |
|
dc.date.available |
2020-01-15T20:52:03Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/155443 |
|
dc.description.abstract |
© 2019, Pleiades Publishing, Ltd. Upper bounds for the norms of Hermite—Fejér interpolation operators in one-dimensional and multidimensional periodic Sobolev spaces are obtained. It is shown that, in the one-dimensional case, the norm of this operator is bounded. In the multidimensional case, the upper bound depends on the ratio of the numbers of nodes on separate coordinates. |
|
dc.relation.ispartofseries |
Mathematical Notes |
|
dc.subject |
Hermite—Fejér interpolation operator |
|
dc.subject |
Sobolev spaces |
|
dc.title |
Estimate of the Norm of the Hermite—Fejér Interpolation Operator in Sobolev Spaces |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5-6 |
|
dc.relation.ispartofseries-volume |
105 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
905 |
|
dc.source.id |
SCOPUS00014346-2019-105-56-SID85068162714 |
|