Показать сокращенную информацию
dc.contributor.author | Bikchentaev A. | |
dc.date.accessioned | 2020-01-15T20:52:02Z | |
dc.date.available | 2020-01-15T20:52:02Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/155441 | |
dc.description.abstract | © 2019, Pleiades Publishing, Ltd. Let φ be atrace on aunital C*-algebra A, let Mφ be the ideal of definition of the trace φ, and let P, Q∈ A be idempotents such that QP = P. If Q∈ Mφ then P∈ Mφ and 0 ≤ φ(P) ≤ φ(Q). If Q− P∈ Mφ then φ(Q − P) ∈ ℝ+. Let A, B∈ A be tripotents. If AB = B and A∈ Mφ, then B∈ Mφ and 0 ≤ φ(B2) ≤ φ(A2) < +∞. Let A be a von Neumann algebra. Then φ(|PQ−QP|)≤min{φ(P),φ(Q),φ(|P−Q|)} for all projections P, Q≤ A. The following conditions are equivalent for a positive normal functional φ on a von Neumann algebra A:(i)φ is a trace;(ii)φ(Q − P) ∈ ℝ+ for all idempotents P, Q∈ A with QP = P;(iii)φ(|PQ − QP|) ≤ min{φ(P), φ(Q)} for all projections P, Q∈ A;(iv)φ(PQ + QP) ≤ φ(PQP + QPQ) for all projections P, Q∈ A;. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | C*-algebra | |
dc.subject | commutator | |
dc.subject | Hilbert space | |
dc.subject | idempotent | |
dc.subject | linear operator | |
dc.subject | projection | |
dc.subject | trace | |
dc.subject | trace-class operators | |
dc.subject | tripotent | |
dc.subject | von Neumann algebra | |
dc.title | Trace and Differences of Idempotents in C*-Algebras | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5-6 | |
dc.relation.ispartofseries-volume | 105 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 641 | |
dc.source.id | SCOPUS00014346-2019-105-56-SID85068130010 |