Kazan Federal University Digital Repository

Method of Selecting an Optimal Activation Function in Perceptron for Recognition of Simple Objects

Show simple item record

dc.date.accessioned 2019-01-22T20:56:12Z
dc.date.available 2019-01-22T20:56:12Z
dc.date.issued 2018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149506
dc.description.abstract © 2018 IEEE. Artificial feedforward neural networks for simple objects recognition of different configurations are considered. The novel family of activation functions for neural networks intended for objects recognition is proposed. The method of selecting an optimal activation function from this family is presented. The results on performance evaluation of the activation functions at recognition of handwritten digits are obtained.
dc.title Method of Selecting an Optimal Activation Function in Perceptron for Recognition of Simple Objects
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS-2018-SID85057993018


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics