Показать сокращенную информацию
dc.contributor.author | Spiridonov A. | |
dc.contributor.author | Karchevskii E. | |
dc.date.accessioned | 2019-01-22T20:55:56Z | |
dc.date.available | 2019-01-22T20:55:56Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/149478 | |
dc.description.abstract | © 2018 IEEE. We study the modes of a triangular microcavity laser, namely the frequencies of emission, threshold values of gain, and mode field patterns, within the classical electro-magnetics approach. Our instrument is the accurate formalism of Lasing Eigenvalue Problem (LEP), i.e. boundary-value problem with full set of the boundary and radiation conditions. The LEP is reduced to a nonlinear eigenvalue problem for the Muller integral equation on the cavity's boundary. Discretizing it with a Nyström approximation of weakly singular integral operators, we obtain a characteristic equation for the mode frequencies and thresholds. | |
dc.subject | lasing eigenvalue problem | |
dc.subject | microcavity laser | |
dc.subject | Muller boundary integral equation | |
dc.subject | Nyström method | |
dc.title | Spectra, Thresholds, and Modal Fields of a Triangular Microcavity Laser | |
dc.type | Conference Paper | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 168 | |
dc.source.id | SCOPUS-2018-SID85055788297 |