Электронный архив

An approach to reducing complexity of neuromorphic fault dictionary construction for analogue integrated circuits

Показать сокращенную информацию

dc.contributor.author Mosin S.
dc.date.accessioned 2019-01-22T20:55:39Z
dc.date.available 2019-01-22T20:55:39Z
dc.date.issued 2018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149455
dc.description.abstract © 2018 IEEE. This paper is mainly focused on the reducing a complexity of fault dictionary constructing for analog integrated circuits based on neural network. The benefits of fault dictionary based on neural network (NN) such as associative operating mode and small influence of the number of considered faults on the NN architecture are presented. The problems of constructing the neuromorphic fault dictionary in the aspect of big data are discussed. The approach to selection the essential characteristics of controlled parameters during testing and fault diagnostics as well as to reduction of the training set dimension is proposed. The principal component analysis (PCA) and criterion based on the explained residual variance are applied for reduction the number of coefficients used for the neural network training. The decomposition of design flow corresponding to the proposed approach is presented. The experimental results demonstrates efficiency as the time and computational cost reduction for the construction of neuromorphic fault dictionary, which provides high fault coverage up to 100 %.
dc.subject Analog circuits
dc.subject Design-for-testability
dc.subject Neuromorphic fault dictionary
dc.subject Principal component analysis
dc.subject Testing and diagnostics
dc.title An approach to reducing complexity of neuromorphic fault dictionary construction for analogue integrated circuits
dc.type Conference Paper
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1
dc.source.id SCOPUS-2018-SID85050003918


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика