Kazan Federal University Digital Repository

A classification of meteor radio echoes based on artificial neural network

Show simple item record

dc.date.accessioned 2019-01-22T20:53:54Z
dc.date.available 2019-01-22T20:53:54Z
dc.date.issued 2018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149322
dc.description.abstract © by Mikhail Danilov, Arkadi Karpov, published by De Gruyter 2018. An artificial neural network is described for classification of meteor trails into the distinct overdense, intermediate and underdense trail categories. The neural network was trained and on model data obtained using the "KAMET" program and tested on real data. The best result of classification success rate of 95% without according to the heights of the formation of meteor trails. Results of classification with according to the heights of the formation of meteor trails are 82% - 91%.
dc.subject Artificial neural networks
dc.subject Classification algorithms
dc.subject Meteor radio echoes
dc.subject Radiowave propagation
dc.title A classification of meteor radio echoes based on artificial neural network
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 27
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 318
dc.source.id SCOPUS-2018-27-1-SID85059549602


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics