Kazan Federal University Digital Repository

Pushing intelligence to the edge with a stream processing architecture

Show simple item record

dc.date.accessioned 2019-01-22T20:53:26Z
dc.date.available 2019-01-22T20:53:26Z
dc.date.issued 2018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149281
dc.description.abstract © 2017 IEEE. The cloud computing paradigm underpins the Internet of Things (IoT) by offering a seemingly infinite pool of resources for processing/storing extreme amounts of data generated by complex IoT systems. The cloud has established a convenient and widely adopted approach, where raw data are vertically offloaded to cloud servers from resource-constrained edge devices, which are only seen as simple data generators, not capable of performing more sophisticated processing activities. However, there are more and more emerging scenarios, where the amount of data to be transferred over the network to the cloud is associated with increased network latency, making the results of the computation obsolete. As various categories of edge devices are becoming more and more powerful in terms of hardware resources - specifically, CPU and memory - the established way of off-loading computation to the cloud is not always seen as the most convenient approach. Accordingly, this paper presents a Stream Processing architecture for spreading workload among a local cluster of edge devices to process data in parallel, thus achieving faster execution and response times. The experimental results suggest that such a distributed in-memory approach to data processing at the very edge of a computational network has a potential to address a wide range of IoT-related scenarios.
dc.subject Apache NiFi
dc.subject Edge computing
dc.subject Horizontal offloading
dc.subject Internet of things
dc.subject Stream processing
dc.title Pushing intelligence to the edge with a stream processing architecture
dc.type Conference Paper
dc.relation.ispartofseries-volume 2018-January
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 792
dc.source.id SCOPUS-2018-2018-SID85047094836


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics