Электронный архив

Uniqueness of the Critical Point of the Conformal Radius: “Method of Déjà vu”

Показать сокращенную информацию

dc.contributor.author Kazantsev A.
dc.contributor.author Kinder M.
dc.date.accessioned 2019-01-22T20:52:01Z
dc.date.available 2019-01-22T20:52:01Z
dc.date.issued 2018
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149162
dc.description.abstract © 2018, Pleiades Publishing, Ltd. New conditions are constructed for the critical point of the conformal radius (hyperbolic derivative) to be unique where the mapping function is holomorphic and locally univalent in the unit disk. We use an approach based on the uniqueness research of the univalence conditions depending on the additional parameters. Such a research has been carried out for the univalence criteria due to Singhs, Szapiel and some other mathematicians.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.subject Conformal radius
dc.subject critical points of conformal radius
dc.subject Gakhov equation
dc.subject hyperbolic derivative
dc.subject inner radius of domain
dc.title Uniqueness of the Critical Point of the Conformal Radius: “Method of Déjà vu”
dc.type Article
dc.relation.ispartofseries-issue 9
dc.relation.ispartofseries-volume 39
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1370
dc.source.id SCOPUS19950802-2018-39-9-SID85059670794


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика