Показать сокращенную информацию
dc.contributor.author | Khadiev K. | |
dc.contributor.author | Nahimovs N. | |
dc.contributor.author | Santos R. | |
dc.date.accessioned | 2019-01-22T20:51:47Z | |
dc.date.available | 2019-01-22T20:51:47Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/149149 | |
dc.description.abstract | © 2018, Pleiades Publishing, Ltd. Finding a marked vertex in a graph can be a complicated task when using quantum walks. Recent results show that for two or more adjacent marked vertices search by quantum walk with Grover’s coin may have no speed-up over classical exhaustive search. In this paper, we analyze the probability of finding a marked vertex for a set of connected components of marked vertices. We prove two upper bounds on the probability of finding a marked vertex and sketch further research directions. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | exceptional configurations | |
dc.subject | Quantum computing | |
dc.subject | quantum walks | |
dc.subject | stationary states | |
dc.title | On the Probability of Finding Marked Connected Components Using Quantum Walks | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 39 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1016 | |
dc.source.id | SCOPUS19950802-2018-39-7-SID85053511171 |