dc.contributor.author |
Bikchentaev A. |
|
dc.date.accessioned |
2019-01-22T20:51:41Z |
|
dc.date.available |
2019-01-22T20:51:41Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/149140 |
|
dc.description.abstract |
© 2018, Pleiades Publishing, Ltd. Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We define two (closed in the topology of convergence in measure τ) classes P1and P2of τ-measurable operators and investigate their properties. The class P2contains P1. If a τ-measurable operator T is hyponormal, then T lies in P1; if an operator T lies in Pk, then UTU* belongs to Pkfor all isometries U from Mand k = 1, 2; if an operator T from P1admits the bounded inverse T−1then T−1lies in P1. If a bounded operator T lies in P1then T is normaloid, Tnbelongs to P1and a rearrangement μt(Tn) ≥ μt(T)nfor all t > 0 and natural n. If a τ-measurable operator T is hyponormal and Tnis τ-compact operator for some natural number n then T is both normal and τ-compact. If an operator T lies in P1then T 2 belongs to P1. If M= B(H) and τ = tr, then the class P1coincides with the set of all paranormal operators onH. If a τ-measurable operator A is q-hyponormal (1 ≥ q > 0) and |A*| ≥ μ∞(A)I then Ais normal. In particular, every τ-compact q-hyponormal (or q-cohyponormal) operator is normal. Consider a τ-measurable nilpotent operator Z ≠ 0 and numbers a, b ∈ R. Then an operator Z*Z − ZZ* + aRZ + bSZ cannot be nonpositive or nonnegative. Hence a τ-measurable hyponormal operator Z ≠ 0 cannot be nilpotent. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
Hilbert space |
|
dc.subject |
hyponormal operator |
|
dc.subject |
integrable operator |
|
dc.subject |
measure topology |
|
dc.subject |
nilpotent |
|
dc.subject |
normal semifinite trace |
|
dc.subject |
paranormal operator |
|
dc.subject |
projection |
|
dc.subject |
rearrangement |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
τ-compact operator |
|
dc.subject |
τ-measurable operator |
|
dc.title |
Paranormal Measurable Operators Affiliated with a Semifinite von Neumann Algebra |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
39 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
731 |
|
dc.source.id |
SCOPUS19950802-2018-39-6-SID85051067313 |
|