Kazan Federal University Digital Repository

Paranormal Measurable Operators Affiliated with a Semifinite von Neumann Algebra

Show simple item record

dc.contributor.author Bikchentaev A.
dc.date.accessioned 2019-01-22T20:51:41Z
dc.date.available 2019-01-22T20:51:41Z
dc.date.issued 2018
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149140
dc.description.abstract © 2018, Pleiades Publishing, Ltd. Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We define two (closed in the topology of convergence in measure τ) classes P1and P2of τ-measurable operators and investigate their properties. The class P2contains P1. If a τ-measurable operator T is hyponormal, then T lies in P1; if an operator T lies in Pk, then UTU* belongs to Pkfor all isometries U from Mand k = 1, 2; if an operator T from P1admits the bounded inverse T−1then T−1lies in P1. If a bounded operator T lies in P1then T is normaloid, Tnbelongs to P1and a rearrangement μt(Tn) ≥ μt(T)nfor all t > 0 and natural n. If a τ-measurable operator T is hyponormal and Tnis τ-compact operator for some natural number n then T is both normal and τ-compact. If an operator T lies in P1then T 2 belongs to P1. If M= B(H) and τ = tr, then the class P1coincides with the set of all paranormal operators onH. If a τ-measurable operator A is q-hyponormal (1 ≥ q > 0) and |A*| ≥ μ∞(A)I then Ais normal. In particular, every τ-compact q-hyponormal (or q-cohyponormal) operator is normal. Consider a τ-measurable nilpotent operator Z ≠ 0 and numbers a, b ∈ R. Then an operator Z*Z − ZZ* + aRZ + bSZ cannot be nonpositive or nonnegative. Hence a τ-measurable hyponormal operator Z ≠ 0 cannot be nilpotent.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.subject Hilbert space
dc.subject hyponormal operator
dc.subject integrable operator
dc.subject measure topology
dc.subject nilpotent
dc.subject normal semifinite trace
dc.subject paranormal operator
dc.subject projection
dc.subject rearrangement
dc.subject von Neumann algebra
dc.subject τ-compact operator
dc.subject τ-measurable operator
dc.title Paranormal Measurable Operators Affiliated with a Semifinite von Neumann Algebra
dc.type Article
dc.relation.ispartofseries-issue 6
dc.relation.ispartofseries-volume 39
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 731
dc.source.id SCOPUS19950802-2018-39-6-SID85051067313


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics