Показать сокращенную информацию
dc.date.accessioned | 2019-01-22T20:51:30Z | |
dc.date.available | 2019-01-22T20:51:30Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/149123 | |
dc.description.abstract | © 2018, Pleiades Publishing, Ltd. We consider a class of anisotropic elliptic differential equations of second order with divergent form and variable exponents. The corresponding elliptic operators are pseudo-monotone and coercive. We obtain solvability conditions for the Dirichlet problem in unbounded domains Ω ⊂ ℝn, n ≥ 2. The proof of existence of solutions is free of restrictions on growth of data for |x| → ∞. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | anisotropic elliptic equation | |
dc.subject | Dirichlet problem | |
dc.subject | existence solution | |
dc.subject | pseudomonotone operator | |
dc.subject | variable exponent | |
dc.title | Existence of Solutions of Anisotropic Elliptic Equations with Variable Exponents in Unbounded Domains | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 39 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 224 | |
dc.source.id | SCOPUS19950802-2018-39-2-SID85044332484 |