dc.date.accessioned |
2019-01-22T20:51:30Z |
|
dc.date.available |
2019-01-22T20:51:30Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/149123 |
|
dc.description.abstract |
© 2018, Pleiades Publishing, Ltd. We consider a class of anisotropic elliptic differential equations of second order with divergent form and variable exponents. The corresponding elliptic operators are pseudo-monotone and coercive. We obtain solvability conditions for the Dirichlet problem in unbounded domains Ω ⊂ ℝn, n ≥ 2. The proof of existence of solutions is free of restrictions on growth of data for |x| → ∞. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.subject |
anisotropic elliptic equation |
|
dc.subject |
Dirichlet problem |
|
dc.subject |
existence solution |
|
dc.subject |
pseudomonotone operator |
|
dc.subject |
variable exponent |
|
dc.title |
Existence of Solutions of Anisotropic Elliptic Equations with Variable Exponents in Unbounded Domains |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
39 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
224 |
|
dc.source.id |
SCOPUS19950802-2018-39-2-SID85044332484 |
|